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Generation of a Wide-Band Electromagnetic
Response Through a Laguerre Expansion

Using Early-Time and Low-Frequency Data
Tapan K. Sarkar, Fellow, IEEE,and Jinhwan Koh

Abstract—The objective of this paper is to generate a wide-band
and temporal response for three-dimensional conducting struc-
tures. This is accomplished through the use of a hybrid method
that involves generation of early-time and low-frequency in-
formation for the electromagnetic structure of interest. These
two, early-time and low-frequency information, are mutually
complementary and contain all the necessary information for
an ultrawide-band response for a sufficient record length. The
time-domain response is modeled as a Laguerre series expansion.
The frequency-domain response is also expressed in an analytic
form using the same expansion coefficients used in modeling of
the time-domain response. The data in both the domains is used to
solve for the polynomials coefficients in a data-fitting procedure.
Once the polynomial coefficients are known, the available data is
simultaneously extrapolated in both domains. This approach is
attractive because expansions with a few terms give good extrap-
olation in both time and frequency domains. The computation
involved is minimal with this method.

Index Terms—Early time, hybrid methods, Laguerre expansion,
low frequency.

I. INTRODUCTION

I N ELECTROMAGNETIC analysis, field quantities are usu-
ally assumed to be time–harmonic. This suggests that the

solution lies in the frequency domain. The method of moments
(MOM), which uses an integral-equation formulation, can be
used to perform the frequency-domain analysis. However, for
broad-band analysis, this approach can get very computation-
ally intensive; as the MOM program needs to be executed for
each frequency of interest and, for high frequencies, the size of
the matrix can be very large.

The time-domain approach is preferred for broad-band anal-
ysis. Other advantages of a time-domain formulation include
easier modeling of nonlinear and time-varying media, and use of
gating to eliminate unwanted reflections. For a time-domain in-
tegral-equation formulation, the method of marching on in time
(MOT) is usually employed [1], [2]. A serious drawback of this
algorithm is the occurrence of late-time instabilities in the form
of high-frequency oscillation.

In this paper, we present a technique to overcome late-time
oscillations. Using early-time and low-frequency data, we ob-
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tain stable late-time and broad-band information. A frequency-
domain MOM approach can efficiently generate low-frequency
data [3], while the MOT algorithm can be used to obtain stable
early-time data quickly. Thus, the overall analysis is computa-
tionally very efficient.

The time and frequency-domain responses from three-dimen-
sional conducting objects are considered in this paper. It is as-
sumed that the conducting structures are excited by band-lim-
ited functions, such that both the time- and frequency-domain
responses are of finite support for all practical purposes. From
a strictly mathematical point-of-view, a causal time-domain re-
sponse cannot be strictly band-limited and vice versa. However,
a response strictly limited in time can be assumed to be approx-
imately band-limited if the amplitude of the frequency response
is too small (outside the region of interest) to be of any conse-
quence.

In computational electromagnetics, one needs to obtain the
electromagnetic “fingerprint” of an object. This is equivalent
to obtaining the entire impulse response in the time domain or
obtaining the transfer function over the entire frequency band.
Both of these require tremendous computational resources.
Here, we propose a hybrid approach, which will minimize
the computational efforts. The goal is attained by generating
early-time and low-frequency information that are not compu-
tationally demanding. A Laguerre series is then fit to the data
in the time domain and its transform—a polynomial—in the
frequency domain to extrapolate the response simultaneously
both in time and frequency. In this approach, we are not cre-
ating any new information, but using the existing information
to extrapolate the responses simultaneously in the time and
frequency domains.

For these responses, an optimal choice of basis functions
would, therefore, be one that provides compact support. The
Laguerre series is well suited for real-life signals with compact
support as it naturally enforces causality. The fact that the
Fourier transform of Laguerre functions is an analytic function
allows us to work simultaneously with time and frequency-do-
main data.

It is better to use the Laguerre polynomials instead of the as-
sociate Hermite functions [4], [5] even though the latter are the
eigenfunctions of the Fourier transform operator. The problem
with the Hermite expansion is that these polynomials are two
sided ( , ) and, hence, the origin of the expansion of the
causal time-domain functions by a Hermite series is very crit-
ical. In contrast, the Laguerre series is defined only over the in-
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terval and, hence, are considered to be more suited for
the problem at hand, as they naturally enforce causality.

In Section II, we introduce the Laguerre functions and set up
the relevant equations for the problem. In Section III, we discuss
some numerical results. Finally, some conclusions are presented
in Section IV.

II. FORMULATION

Consider the set of functions [6],

(1)

These are the Laguerre functions of order. They are causal,
i.e., exist for . They can also be computed in a stable
fashion recursively through

(2)

The Laguerre functions are orthogonal as

otherwise.
(3)

An orthonormal basis function set can be derived from the La-
guerre functions through the representation

(4)

where is a scaling factor. A causal electromagnetic response
function at a particular location in space for can be
expanded into a Laguerre series as

(5)

Laguerre functions of order 0–3 are plotted in Fig. 1. These
functions can approximate causal responses quite well and, by
varying the scaling factor, the support provided by the expan-
sion can be increased or decreased.

As can be seen, the Laguerre functions are causal and
also their modality (number of local maximas and minimas)
increases with the increase in order.

A signal with compact time support can be expanded as

(6)

The Fourier transform of the above expression can be evaluated
as

(7)

Fig. 1. Laguerre functions of order 0–3.

where and . The choice of the scaling
factor is crucial because it also affects and these two
decide the amount of support given by the Laguerre functions
to the time- and frequency-domain responses, respectively.
Given about 50%–60% of initial time-domain data and an
equal amount of low-frequency data, with a proper choice of

(order of expansion) and (scaling factor), it is possible
to simultaneously extrapolate the function in both domains.
The value of can be decided by choosing a cutoff for the
magnitude of the coefficients, i.e., discarding the ones that
are smaller than a critical value. Choosing an unnecessarily
large will introduce oscillations in the extrapolation region.
The coefficients for the Laguerre expansion are obtained by
solving a total least-squares problem, using singular value
decomposition (SVD) [7].

A. Matrix Formulation

Let and be the number of time- and frequency-do-
main samples that are given for the functions and ,
respectively. Here, is considered to be the Fourier trans-
form of .

The matrix representation of the time-domain data, utilizing
(6), would then be

...
...

...
...

... ...
(8)

Similarly, the matrix representation in the frequency domain
would be (9), shown at the bottom of the following page. By
combining the two equations, we get (10), shown at the bottom
of the following page. The unknown coefficients of the ex-
pansion are obtained by solving this matrix equation either
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by using the iterative conjugate gradient method or the total
least-squares implementation of the SVD.

III. N UMERICAL EXAMPLES

In this section, five examples are presented to validate the
above technique. A program to evaluate the currents on an ar-
bitrarily shaped closed or open body using the electric-field in-
tegral equation (EFIE) is used [8]. The rationale for doing this
is that we are going to use the EFIE both in the time [9] and
frequency domains [8]. We utilize the same surface patching

scheme for both domains, hence, eliminating some of the ef-
fects of discretization from this study. The triangular patching
approximates the surface of a scatterer with a set of adjacent tri-
angles. The current perpendicular to each nonboundary edge is
an unknown to be solved for.

Although the program can be used with an arbitrary excita-
tion, we used a linearly polarized plane wave with a Gaussian
profile in time. The excitation has the form

(11)

...
...

...
...

...
...

(9)

...
...

...
...

...
...

...
...

...

...

...

(10)
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Fig. 2. Triangulation of a square plate.

where

(12)

unit vector that defines the polarization of the incoming
plane wave;
amplitude of the incoming wave;
a delay, which is used so that the pulse rises smoothly
from 0 for time to its value at time;

position of an arbitrary point in space;
unit wave vector defining the direction of arrival of the
incident pulse;
spread factor of Gaussian input pulse.

To find the frequency response to the above Gaussian plane
wave, the response of the system in the frequency domain is
multiplied by the spectrum of the Gaussian plane wave. The
spectrum is given by

(13)
The electromagnetic responses are to be extrapolated from

the currents induced on the parallel-plate resonator, plate sphere
combination, resonating cavity, and a cone-hemisphere combi-
nation. All bodies are assumed to be perfectly conducting. Fig. 2
shows an example of the triangulation scheme used. It shows a
plate being approximated by 144 triangles and 233 edges.

In all our computations, is chosen to be 377 V/m. The
time step ( ) is dictated by the discretization used in modeling
the geometry of each example and is dictated by the highest fre-
quency of operation. The frequency step () is 2 MHz. In all
the examples, the extrapolated time-domain response is com-
pared to the output of the time-domain response obtained from
the MOT program [9] and the extrapolated frequency-domain
response is compared to that of the MOM program [8]. In all
the plots, dashed line refers to the extrapolated response using
Laguerre expansions, while the solid line refers to the data ob-
tained from the MOT or MOM programs.

Fig. 3. Discretization of the two plates of unequal size.

Fig. 4. Time-domain response at an edge on the smaller plate.

Example 1—Unequal Plates

In this example, we have two square plates of zero thickness
and sides 1 and 2 m in the -plane. The configuration with the
discretization is shown in Fig. 3. The plate separation is 2 m.
The excitation arrives from the direction , , i.e.,
along the negative-direction. is along the -axis. The time
step used in the MOT program is 196.8 ps. In this example,

ns and ns. The edge under consideration
is on the smaller plate, in the-direction, and is located at the
center.

Using the MOT algorithm, time-domain data is obtained from
to ns (250 data points). Also, frequency-domain

data is obtained from dc to GHz (500 data points).
Assume that only the first 90 time-data points (up to ns)
and the first 120 frequency-data points (up to MHz) are
available. Solving for the matrix equation (10) using the avail-
able data, the polynomial coefficients are obtained. These coef-
ficients are then used to extrapolate the time-domain response
to 250 points (50 ns) and the frequency-domain response is ex-
trapolated to 500 points (0.998 GHz).

The order of the expansion was chosen to be 60. From Fig. 4,
it can be seen that the time-domain reconstruction is almost in-
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Fig. 5. Frequency response at the same edge located on the smaller plate—real
part.

Fig. 6. Frequency response at the same edge located on the smaller
plate—imag part.

distinguishable from the actual (MOT) data. The reconstruction
in frequency domain is also very good, as can be seen from
Figs. 5 and 6.

Example 2—Equal Plates

Two equal plates of side 1 m are placed as in the previous
example, but the separation between the plates is reduced to
0.25 m so as to increase the resonance effects. The excitation
arrives form the direction , , i.e., along the neg-
ative -direction. is along the -axis. The time step used in
the MOT program is 160.1 ps. In this example, ns and

ns. The edge under consideration is in the-direction
and close to the center of the upper plate.

Using the MOT algorithm, the time-domain data is obtained
from to ns (780 data points). Also, fre-
quency-domain data is obtained from dc to GHz
(780 data points). Assume that only the first 70 time-data points
(up to ns) and first 90 frequency-data points (up to

MHz) are available. Solving for the matrix equation

Fig. 7. Time-domain response at one of the edges on the upper plate.

Fig. 8. Frequency response at one of the edges on the upper plate—real part.

(10) using the available data, the time-domain response is ex-
trapolated to 780 points (124.8 ns) and the frequency-domain
response is extrapolated to 780 points (1.558 GHz).

The order of the expansion was chosen to be 40. From Fig. 7,
it can be seen that the time-domain reconstruction is almost in-
distinguishable from the actual (MOT) data. The reconstruction
in frequency domain also agrees closely with actual (MOM)
data, as can be seen from Figs. 8 and 9.

Example 3—Plate–Sphere

1) Separation of 5 m:A plate–sphere combination is con-
sidered next, with the sphere of radius 1 m centered at the origin
and separation of 5 m. The actual discretization is shown in
Fig. 10. The excitation arrives from , i.e.,
along the negative-direction. is along the -axis. In this ex-
ample, ns and ns. The time step used in
the MOT program is 0.484 ns. The edge under consideration is
on the plate, along the-direction, and close to the center.

The time-domain data is obtained using the MOT algorithm
from to ns (300 data points). Also, the frequency-
domain data is obtained using the MOM program from dc to
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Fig. 9. Frequency response at one of the edges on the upper plate—imag part.

Fig. 10. Discretization of the plate–sphere structure.

MHz (150 data points). Using the first 80 time data
points (up to 38.67 ns) and the first 50 frequency data points
(up to 98 MHz), the time-domain response is extrapolated to
300 points, and the frequency-domain response is extrapolated
to 150 points.

The order of the expansion is chosen to be 50. From Fig. 11, it
can be seen that the time-domain reconstruction is agreeable to
the actual MOT data. From Figs. 12 and 13, the real and imag-
inary parts also have reasonably good reconstruction using the
Laguerre expansions.

2) Separation of 12 m:The separation between the plates is
increased to 12 m. All the other parameters are kept unchanged.

The time-domain data is obtained using the MOT algorithm
from to ns (300 data points). Also, the frequency-
domain data is obtained using the MOM program from dc to

MHz (150 data points). Using the first 130 time data
points (up to 62.4 ns) and first 50 frequency data points (up
to 98 MHz), the time-domain response is extrapolated to 300
points and the frequency-domain response is extrapolated to 150
points.

Fig. 11. Time-domain response at one of the edges on the plate, 5-m
separation.

Fig. 12. Frequency response at one of the edges on the plate—real part, 5-m
separation.

Fig. 13. Frequency response at one of the edges on the plate—imag part, 5-m
separation.
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Fig. 14. Time-domain response at one of the edges on the plate, 12-m
separation.

Fig. 15. Frequency response at one of the edges on the plate—real part, 12-m
separation.

The order of the expansion is chosen to be 70. From Fig. 14, it
can be seen that the time-domain reconstruction is agreeable to
the actual MOT data. From Figs. 15 and 16, the real and imag-
inary parts also have reasonably good reconstruction using the
Laguerre expansions.

Example 4—Cavity

In this example, a rectangular cavity of dimensions 1 m
1 m 4 m, centered at the origin with its faces lined up along
the three coordinate axes and its length along the-axes is con-
sidered. The face at m is open. The excitation arrives
from the direction , , and is along

, . In this example, ns and
ns. The time step used in the MOT program is 0.267 ns.

The time-domain data is obtained using the MOT algorithm
from to ns (500 data points). Also, the fre-
quency-domain data is calculated with the MOM program from
dc to MHz (250 data points). Assuming that the first
50 time data points (up to ns) and first 60 frequency
data points (up to MHz) are available, the time-domain
response was extrapolated to 500 points and the frequency-do-

Fig. 16. Frequency response at one of the edges on the plate—imag part, 12-m
separation.

Fig. 17. Time-domain response at one of the edges in the cavity.

Fig. 18. Frequency-domain response at the same edge in the cavity—realpart.

main response was extrapolated to 250 points.was chosen to
be 40. From Fig. 17, it can be seen that time-domain response
closely agrees with the actual MOT data. The frequency-domain
reconstruction is also close from Figs. 18 and 19.
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Fig. 19. Frequency-domain response at the same edge in the cavity—imag
part.

Fig. 20. Time-domain response at one of the edges on a cone–hemisphere.

Example 5—Cone–Hemisphere

In this example we have a combination of a cone and hemi-
sphere, with the hemisphere attached to the base of a cone and
its axis oriented along the-direction. The bases of the cone
and hemisphere have a radius 1 m and the height of the cone is
4 m. The excitation arrives from the direction , ,
i.e., along the negative-direction. is along the -axis. In
this example, ns and ns. The time
step used is 206.67 ps and the frequency step is 2 MHz. The
time-domain response is calculated using the MOT algorithm
from to ns (450 data points). Also, the fre-
quency-domain response is calculated with the MOM program
from dc to MHz (225 data points). Assuming that the
first 130 time data points (up to ns) and the first
40 frequency data points (up to MHz) are available,
the time-domain response was extrapolated to 450 points and
the frequency-domain response is extrapolated to 225 points.

was chosen to be 40. From Fig. 20, it can be seen that the
time-domain response closely agrees with the actual MOT data.
The frequency-domain reconstruction is also close, as seen from
Figs. 21 and 22.

Fig. 21. Frequency-domain response at the same edge on a
cone–hemisphere—real part.

Fig. 22. Frequency-domain response at the same edge on a
cone–hemisphere—imag part.

IV. CONCLUSIONS

This paper deals with the problem of simultaneous extrap-
olation in time and frequency domains using only early-time
and low-frequency data. This has been accomplished through
the use of Laguerre expansion, which are inherently causal and,
thus, fit the time-domain data better than the associate Her-
mite functions. The computation involved is minimal because
we require only early-time and low-frequency information. In
addition, we need to solve a small matrix equation. This, cou-
pled with the fact that expansions of order around 50 give good
representation of the signals in both domains, ensures that this
method is computationally very efficient.

In this paper, we have applied this technique to the problem
of extrapolating the current on a scatterer being excited by a uni-
form plane wave. Six examples were considered—parallel-plate
resonator, plate–sphere combination, resonating cavity, and a
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cone–hemisphere combination. Using early-time and low-fre-
quency data, we have demonstrated the possibility of good ex-
trapolation in both the time and frequency domains.

There are several issues that are yet to be answered for this
approach. One is the question of sensitivity and the second is the
order of the polynomial required. These issues will be addressed
in the future.
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